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Abstract-The main equations for the numerical simulation of convection in a two-phase zone based on 
a model of the continuum approach to a porous medium are advanced. In order to solve non-linear 
computation caused by the interaction of unknown variables in the equations, the trial-and-error method 
is used. The size and extent of interdendritic flow at different times are indicated from calculated velocity 
profiles. It is shown that the radial back-flow area due to natural convection corresponds to the mushy 
zone above the 625°C isotherm under conditions of a small cooling rate. With increasing the cooling rate, 

the flow due to the siphonic force becomes more and more important. 

1. INTRODUCTION 

INTERDENDRITIC fluid flow in a two-phase zone is a 
very important transport phenomenon during sol- 

idification, and gives rise to some defects in an alloy. 
The driving forces causing the fluid flow include 
siphonic force due to solidification shrinkage (or 
expansion) and gravity acting on a fluid of variable 
density, etc. Mehrabian et al. [l] pointed out that 
with changing cooling conditions there may be three 
modes of interdendritic flow, i.e. stable flow, inter- 
mediate flow, and unstable flow. The natural con- 
vection of the mushy zone due to gravity leads to 
unstable flow which can cause some casting defects 
such as channel segregation, etc. 

In general, a mushy zone during solidification is 
described with a model of a porous medium. The 
mushy zone, however, has its own features different 
from the porous medium, such as (1) latent heat of 
solidification, (2) variable liquid fraction (or void 
fraction), and (3) solute distribution at liquid-solid 

interface, etc. It is necessary that the energy, mass, 
and momentum transport equations for the porous 
medium be corrected with the features mentioned 
above. 

A numerical computation method has often been 
adopted in engineering problems to perform quan- 
titative analysis of liquid convection in the mushy 
zone in recent years. Ridder et al. [2] gave an analysis 
of the effect of fluid flow in axisymmetric ingots of 
continuous casting and electroslag remelting. Maples 
and Poirier [3] analysed the transients of convection in 
the two-phase zone for unidirectional and horizontal 
solidification. Bennon and Incropera [4] applied a 
continuum model to investigate the solidification of 
aqueous ammonium chloride solution in the presence 

of an imposed forced flow. However, numerical simu- 
lation of convection in the mushy zone is still under 
development. This is because (1) the mechanism of 

the convection must be described with several physical 
equations which interact with each other, and it is 
difficult to combine them in calculation ; (2) the math- 
ematical models of some single-valued conditions for 

the equations are also being probed. 
An axisymmetric unsteady-state model of con- 

vection in the mushy zone has been computed in this 
paper. What is called unsteady-state here is only that 
VT/E is not constant during solidification. A1-4.5Cu 
alloy ingots freeze under different solidifying con- 
ditions, as shown in Table 1 [5]. 

2. ANALYSIS 

2.1. Fundamental equations 

The main equations for numerical simulation of 

convection in a two-phase zone have been advanced 
on the basis of a model of the continuum approach 
to a porous medium. Essential to the treatment of two- 
phase fluids as continua is the concept of a particle [6]. 
One advantage of adopting the model is that various 
equations, describing conservation of energy, mass, 
and momentum, etc. in continua, can be applied to the 
two-phase zone. A set of equations can be expressed as 
follows for the system discussed in this paper [7]. 

2.1.1. Energy equation. 

--Cl -B)fLV*VT (1) 
where (H,/c,,)(af,/~?T) refers to the latent heat of sol- 
idification, and the second term on the right-hand side 
of equation (1) refers to the effect of interdendritic 
flow on energy transport. 

2.1.2. Mass conservation equation. 

(2) 

where 
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NOMENCLATURE 

specific heat 
liquid concentration 

cs average solid concentration 
f;_, ,fs volume fraction of liquid and solid, 

respectively 

g acceleration due to gravity 

h heat transfer coefficient 

HF latent heat of solidification 

H(r) height of liquid metal pool, a function 

ofr 
k equilibrium partition ratio 

K permeability 
n unit vector normal to isotherm 
N buoyancy ratio 
P pressure 

p;, pressure at top of metal pool 

: 

pressure acting on liquidus 
velocity ratio, equation (25) 

r radial coordinate 

R radius of ingot 
t time 
T temperature 

TA ambient temperature 

TB boundary temperature 

TP freezing point of pure aluminium 

U velocity of isotherm 

UE velocity of eutectic isotherm 

UrE, ljZE component of U in the Y- and 

z-direction, respectively 
V interdendritic flow velocity 

K flow velocity due to convection 

VP component of V in the n-direction 

VS flow velocity due to siphonic force 
Vrp, V=, component of VP in the Y- and 

z-direction, respectively 

z axial coordinate. 

Greek symbols 

B solidification shrinkage, (p, - p,,)/p, 

B< concentration coefficient of volume 

expansion 

ar temperature coefficient of volume 
expansion 

v constant for equation (I 1), etc. 

E cooling rate 
Z? thermal conductivity 

P dynamic viscosity 

P density 

P average density. p,& + psfs 

PL liquid density in two-phase zone 

PS solid density 

PLO datum liquid density of alloy 

PsE, PLE density of eutectic-solid and 

eutectic-liquid, respectively. 

(3) 
in or out of the element by diffusion is neglected. (5) 
Solidification occurs with equilibrium at the solid- 

- ._.. . _ 
In addition, the solute conservation equation should 
be considered for a binary alloy system 

. . ._ 

w3 
~ = -v*p,f,cLv at (4) 

where 

a(pC) a _ 
~ = ~(GPsf;+CLPLfL). at 

the rate of solidification is controlled only by the 
rate of heat transfer and convection within the mushy 
zone. (6) The local temperature and the composition 

liquid interface so that there is no undercooling, and 

of the solid at the interface are specified by the local 
composition of the liquid. (7) Diffusion in the solid is 
negligible. (8) Solid density is constant. (9) No pore 
forms during solidification. 

After essential assumptions are given [S], com- 

bining equation (4) with equation (2) provides a 
local solute redistribution in the mushy zone during 
solidification 

The assumptions for deriving equation (6) are as fol- 
lows. (1) A small volume element in the mushy zone 
is large enough that the solid fraction within it at any 
time is exactly the local average, but small enough 
that it can be treated as a differential element. (2) 
There is no movement of the solid phase into or out 
of the element. (3) Solute enters or leaves the element 
only by liquid flow to feed shrinkage. (4) Mass flow 

2.1.3. Velucitv equation. Darcy’s law for flow 
through a porous medium is useful for describing the 
interdendritic flow in the mushy zone, thus 

v = - 3 (VP+p,g). 
L 

2.1.4. Pressure equation. In equation (7), the inter- 

dendritic flow velocity is linearly related to the press- 
ure gradient. Combining equations (3), (6) and (7) 
with equation (2) (see Appendix) provides an ex- 
pression for the pressure distribution in the mushy 
zone 

where 
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2 afL b, aT 

B’=.fLc72+pLz 

b, = %$ PL(PL -PA $c _ _-._____.-_- 
L PSU -wL 

. 

2.2. Eflect of liquid density 
Variance of a fhrid density due to temperature and 

concentration differences can cause a buoyancy force 
which forms natural convection in the fluid. In 
addition, a siphonic force is also related to the density 
in the light of the meaning of solidification shrinkage. 
The close relation between convection and liquid den- 
sity is directly reflected in the above equations, in 
which the liquid density of the mushy zone pL exists. 
pL is a function of temperature T and liquid con- 
centration CL, i.e. pL = pL(T, CL), and from the 
binary phase diagram the concentration is also a func- 
tion of temperature, thus 

The dependence of the liquid density on temperature 
can be derived from equation (9) 

The density variance due to concentration differ- 
ence is generally greater than that due to temperature 
difference during solidification, i.e. (~~~/~~~)= > 

@PLlWC~ in equation (9). dC,/dT is always less 
than zero for an alloy of k < 1. dp,jdT < 0 if @pL/ 
EC,), > 0 and dp,/dT > 0 if (~~P~/C?C~)~ < 0 from 
equation (9). Two different patterns of natural con- 
vection in a two-phase zone, as shown in Fig. 1, 
are formed due to the positive or negative value of 
dp,/dT. It will be seen below that Al-4.5Cu alloy is 
an alloy of dp,/dT < 0 and the convection pattern 
similar to Fig. 1 (a) is caused in its ingot. 

2.3. yodel o~perme~b~lit~ 
The pe~eability K, which can determine the mag- 

nitude of interdend~tic flow velocity, is a very impor- 
tant parameter in the two-phase zone. K is also a 
variable since fL always varies during solidification. 
In the early investigation [l] 

K= vf;. (11) 

After the permeability of interdendritic space is mea- 
sured using a translucent material having the same 

(a) (b) 

FIG. 1. Two patterns of natural convection in the mushy 
zone: (a) dp,/dT < 0; (b) dp,/dT > 0. 

casting structure as metallic alloys, Murakami et al. 
give the following form [9] : 

KK dL,f; (12) 

where iiL is the primary dendrite-arm spacing. Having 
taken some patterns deriving Darcy’s law into con- 
sideration, we generally adopt the equation 

K=vyL (13) 

where n >, 2, which depends on the casting structure 
during solidification. 

3. NUMERICAL METHOD 

A finite difference method of the differential equa- 
tion is used here [IO]. A rectangular area sectioned 
through the axis of the ingot symmetry is divided by 
the square network and Ar = AZ = 2 mm. 

3.1. Trial-and-error method 
Temperature T is the dependence on fL and V in 

equation (1) and in turn fL is on it in equation (6). 
Such cases also exist in other equations. These inter- 
actions make the simulation computation hard to 
solve. In former works the temperature distributions 
are supposed beforehand to simplify the computation 
[3, 1 I]. In order that the numerical simulation of the 
convection in the mushy zone can approach the prac- 
tice process in an ingot as much as possible, com- 
putation in this paper is based on a set of equations 
including energy equation (1). The computation pro- 
cedure is shown with a flow chart in Fig. 2 after 
specifying essential single-valued conditions for the 
equations, the model provides : (1) temperature field, 
(2) density distribution, (3) pressure field, (4) velocity 
field, (5) liquid fraction distribution, and (6) con- 
centration field, etc. 

The interaction with each other, due to control of 
an unknown variable in an equation by variables in 
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I Dimension array 
and ~wnm~n blocks I 

Set up grid 
network and 
compute initiai 
conditions 

Compute liquid density 
of mushy zone 

I 

# 
Compute velocity 
field 

v 
Campute liquid 
fraction 

t 

Compute CL and C, 

I 

t=t+Llt 

I 

FIG. 2. Flow chart of numerical c~rn~utat~~n. 

other equations, must make these equations nonlin- 
ear. If the numerical simulation still adopts the differ- 
ence method of a linear differential equation, a trial- 
and-error method is used so that computation accu- 
racy can be improved. A cycle from temperature T to 
liquid fraction fL in Fig. 2 performs the method. The 
process of recalculating T, pt, P, V, and fL is con- 
tinued until an insignificant change in fL is reached 
(usualfy after 2-3 calculated sequences in every time 
interval &)_ 

Values for ingot dimension, thermal conditions, 
and properties of Al-4.5Cu alloy are given in Tables 
1 and 2, respectively. Figure 3 shows the Al-Cu binary 
diagram and liquid density of the alloy vs compo- 
sition. Boundary conditions for same equatiuns are 
given as follows. 

Table 1. Conditions chosen in test 

ingot code 
ingot size (m) 
preheating temperature 

of mould (“C) 

1008 1003 
40.08 x 0.2 $0.08 x 0.2 

550 270 

cooling rate (“C s- ‘)p 1.8x IO-3 6.0x IO-’ 
solidification time (min) 96 3.4 

t The smallest cooling rate in position of half radius 6 cm 
above the ingot bottom. 

3.2.1. For energy equatim. For simplicity, the 
boundary conditions of the energy equation are indi- 
cated at the surfaces of the ingot. Temperature values 
of all nodal points on the boundary networks at vari- 
ous times are calculated with interpolation methad 
after temperatures are measured with the thermo- 
couples, installed at the side and bottom of the 
ingot, as shown in Fig. 4. Therefore, at the side 



Table 2. Properties of A14.5Cu alloy 

liquidus temperature (“C) 
eutectic temperature (“C) 
eutectic copos. (wt%) 
partition ratio 
viscosity (kg mm ’ SC’) 
latent heat of solidification (J kg- ‘) 
specific heat (J kg- ’ K- ‘) 
thermal conductivity (W m- ’ K- ‘) 

645 
548 

33cu 
0.172 
0.003 

3.89 x IO5 
1.04 x 10’ 

87.8t 

t This is the value in the liquid-solid phase. It is 132.0 W 
m-’ K-’ in the solid phase and 70.0 W m-’ K-’ in the 
liquid phase. 

T= TB(z,t) (144 

and at the bottom 

T = T,(r, t). (14b) 

The top of the ingot is in direct touch with ambient, 

so 

-I:= h(T-T,). (15) 

At the centreline 

aT 
-_=O 
ar ’ (16) 

3.2.2. For pressure equation. Along the liquidus 

isotherm there are only the atmospheric pressure and 
the static pressure of bulk metal liquid if the effect of 
convection in the bulk liquid is left out of consider- 
ation, and the pressure, Pr, is calculated using the 

below equation : 

PL = P, + PLogW). (17) 

At the eutectic isotherm the densities of eutectic- 
liquid and eutectic-solid, i.e. pLE and RsE, are not equal 
so that there must be flow to compensate for the 
solidification shrinkage of the eutectic. This require- 
ment is 

v =PLE-PsEU 
P E. (18) 

PLE 

In the two-dimensional coordinate, VP = V,,ro+ 
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FIG. 4. Position of thermocouple: I, ingot; II, mould; III, 
thermocouple. 

V,,z, and UE = U,,r,+ U,,z,. Combining equa- 
tions (18) and (7) gives 

ap pfL PsE-PLE u _=_ 
& K 

rE 
PLE 

(194 

ap k!! PSE-PLE 
PC - p"zE-PLg. aZ K 

U9b) 
PLE 

At the centreline 

ap 

ar’ 
0. (20) 

The temperature of the alloy at the ingot-mould 
interface may be above the eutectic temperature dur- 
ing the initial stage of solidification. This case requires 

ap 
-_=O 
ar 

atr=R (214 

ap 
-= -pLg atz=O. 
aZ 

(2lb) 

3.3 r PEE. 
- 3.3- 
7 
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I 
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FIG. 3. (a) Binary phase diagram. (b) Densities vs composition for Al-Cu alloy. 
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j5U°C 

545T 

635% 

630°C 

0.3 620% 

0.25 
610% 

I 

42 min 

6 min 

87 mifl 

FIG. 5. Calculated isotherm and liquid fraction isoline of ingot No. 1008. 

4. RESULTS AND DXSCUSSIONS 

The right half of each figure in Fig. 5 is the cal- 
culated isotherm profile and the left half the calculated 
&line profile of the liquid fraction at four different 
times under the cooling condition of ingot No, 1008 
in Table 1. It can be seen by comparison that the 
isoline of fL = 0.35 always carresponds to the 625°C 
isotherm, that is, 65% liquid metal has frozen when 
the temperature falls from liquidus to 425°C. Figure 
6 shows the profiIes of interdendritic fluid flow in the 

mushy zone at the same four times as Fig. 5: cal- 
culated flow velocity on the left-hand side of each 
figure and calculated streamline on the right-hand 
side. The foilowing aspects can be analysed from Figs. 
5 and 6. 

(1) Back-flow toward the cylindrical axis exists in 
the radial direction. It can be found by comparing 
velocity profiles with isotherms at different times that 
the radial back-flow area which corresponds to the 
mushy zone above the 625°C isotherm moves toward 
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I min o~4cm s-’ 6 min 

87 min 

FIG. 6. Calculated velocity profiles in the mushy zone of ingot No. 1008. 

the top and the centreline of the ingot with increasing 
time. 

(2) It can be seen from streamline profiles that the 
back-flow of the whole mushy zone disappears after 
40 min when the temperature of the ingot falls below 
620°C. 

(3) The flow direction in Fig. 6 is similar to that in 
Fig. l(a) since dp,/dT of the Al-4SCu alIoy is fess 
than zero from data of Fig. 3. 

(4) The order of magnitude of the interdendritic 
Aow velocity is IO- 4 cm s- II and the concrete values 

of the velocities are in reference to the length of a ray 
in the velocity profiles of Fig. 6. 

(5) Another natural convection exists near the bot- 
tom of the ingot besides the main convection near the 
vertical wall (Fig. 6(a)), but the second-rate con- 
vection has become very small after 6 min (Fig. 6(b)). 
It is considered by preliminary analysis that the 
second-rate convection is formed dne to the large 
temperature difference above the horizontal bottom 
in the initial stage of solidification. The second-rate 
convection has no evident influence OR the final com- 
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I--- 
645°C 

625T 

548=X 

0.6 min 

645 

625 

590 

548 

-A- 
2.4 min 

FIG. 7. Isothermal profiles and streamlines of ingot No. 1003 at two times. 

position distribution of the ingot since its action is 

short term. 

Figure 7 shows calculated isotherm profiles and 
streamlines at two different times under the cooling 

condition of ingot No. 1003 in Table 1. It can be seen 
by comparison of Fig. 5 with Fig. 7 that the isotherm 
velocity U changes with different solidifying con- 
ditions given in Table 1. The temperature gradient VT 
in the ingot only changes slightly due to great thermal 

diffusivity of the alloy and release of latent heat during 
solidification. According to equation (22), U is in 
direct proportion to the cooling rate E under con- 

ditions of constant VT 

u= _E 
VT’ 

(22) 

The smaller the cooling rate, the smaller the isotherm 
velocity. Therefore, the cooling rate during sol- 
idification plays an important role in producing con- 
vection in a mushy zone. When isotherms move fast 
at a large cooling rate such as greater than lo- ‘“C 
S - ‘, the siphonic force due to solidification shrinkage 

mainly results in the interdendritic flow and gravity 
acting on a fluid of variable density cannot play an 
effective role so that natural convection in the mushy 
zone is not evident. With a decreasing cooling rate, 
movement of the isotherm is gradually getting slower, 
and the gravity force can change the flow direction 
and cause the back-flow due to natural convection. 
The cooling rate of ingot No. 1008 discussed here is 
of the order of IO-‘“C sP ‘. 

Interdendritic flow due to the siphonic force moves 
from liquidus to eutectic, as shown with streamline (1) The main equations for numerical simulation of 

profiles in Fig. 7. The streamlines are almost per- convection in a mushy zone based on a model of the 

pendicular to the isotherms of different times. Any 
back-flow similar to Fig. 6 is not formed in the two- 
phase zone, and this indicates that natural convection 

due to the gravity has little effect on the flow when 
the cooling rate gets large. 

The ratio between interdendritic flow due to gravity 

and one due to siphonic force varies with cooling rate 
during solidification, and the flow velocities caused by 
them can be estimated with the two equations below. 

For flow velocity due to siphonic force V, 

V,=-“u 
1-B 

and for velocity due to gravity V, [7] 

(23) 

Vy;- 
V,=-- P~WT(I 1+ W -_ (24) 

P 

where the buoyancy ratio N = bI.AC,/&-AT [12]. 

It is necessary to define a velocity ratio Q 

K 
Q=v,l. (25) 

The dependence of the ratio Q on the cooling rate E as 
shown in Fig. 8 is built up on the basis of computation. 
When E is greater than a value such as 4.5 x IO- “C 
s- ’ for the A14.5Cu alloy, the value of Q gets smaller 
and smaller, that is, the flow due to the siphonic force 
has an effective influence and the one due to gravity 
has little effect, and vice versa. 

5. CONCLUSIONS 
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0 
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i0-' IO-' 10-2 IO-' 

l (OC 2) 

FIG. 8. Dependence of ratio Q on cooling rate E. 

continuum approach to porous medium have been 
advanced. In order to solve non-linear computation 

caused by the interaction of unknown variables in the 
set of equations, the trial-and-error method is used. 
A cycle from temperature T to liquid fraction fL in 
Fig. 2 performs the method. This process of recal- 
culating T, pL, P, V, and fi is continued until an 

insignificant change in fL is reached. 
(2) Under the cooling condition of about 10-30C 

s- ‘, the extent and size of radial back-flow due to 
natural convection in a mushy zone at different times 
are indicated from calculated velocity profiles. The 
radial back-flow area exists in the mushy zone above 
the 625°C isotherm and the back-flow area disappears 
when the temperature of the whole ingot falls below 
625°C. 

(3) With increasing cooling rate, interdendritic flow 
due to siphonic force gets more and more important 
and one due to gravity more and more secondary. The 
dependence of the velocity ratio Q defined by equation 
(25) on the cooling rate expresses the relation men- 
tioned above : the greater the cooling rate, the smaller 
the ratio Q, and vice versa. 
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APPENDIX: DERIVATION OF EQUATION (8) 

Assuming p$ = constant, combining equations (2) and (3) 
provides 

-V.(PLfLV) = (PL-PS)~+fL$$ (Al) 

Substituting equation (6) for equation (Al) gives 

PLv*(fLv)+fLv.vPL = h-h) 

From the chain rule 

VP, = f $T. (A3) 

Combining equations (A3) and (A2) provides 

.v=a&%_f !!? (A4) 
cL al L at 

where a = p,(p,-p,)/p,(l -k). Assuming 

equation (A4) can be simplified as 

V*(fLV)+bVT*V+be = 0. 

Substituting equation (7) for equation (A5) gives 

(A5) 

+b,VT.g-b, $8 = 0 (A6) 
L 

where b, = b(p&). In axisymmetric coordinates there are 

(A74 

VT = $,+ gzO. (A7c) 
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Assuming K = vf[ and the viscosity of the alloy is taken as 
constant [I], we have (A8b) 

~V(~)=~(~ro+~.z,) (A8a) 

After substituting equations (A7) and (A8) for equation (A6). 
an expression for the pressure distribution in the mushy zone 
during solidification, i.e. equation (8) can be obtained. 

SIMULATION NUMERIQUE DE LA CONVECTION DANS LA DEUX-PHASE ZONE 
D’ALLIAGE BINAIRE 

R&urn&-L’equation fondamentalle pour simulation numerique de convection a la deux-phase zone se 
base sur un modele de medium continu a l’approche du modele poreux. On prend une methode d’essai 
pour resoudre un comptage non-liniaire cause par une interation de variables non-savoir dans les equations. 
Les limite et dimension de la fluide interdendritique dans des temps differents sont indiqies sur des profils 
de vitesses calculees. On voit que la retour-fluide radialle correspond a la zone de solidification au dessus 
de l’isotherme de 625°C sous les conditions de la petite vitesse de refroidissement. En croissant la vitesse 

de refroidissement, de plus en plus important devient le fluide du a la force du siphon. 

NUMERISCHE SIMULATION DER KONVEKTION IN DER ZWEI PHASEN-ZONE VON 
DEN BINAREN LEGIERUNGEN 

Zusammenfassung-Die Grundgleichungen fur numerische Simulation der Konvektion in der zwei Phasen- 
Zone griindet auf dem Model1 vom Kontinuum des pordsen Mediums. Urn die nichtlineare Berechnung 
zu l&en, die durch die sich gegenseitig beeinflussenden unbekannten Variablen in den verschiedenen 
Gleichungen verursacht wird, wird die Versuchsmethode angewandt. Der Bereich und die G&se der 
interdendritischen Stromung, die durch die nattirlichen Konvektion in den verschiedenen Zeitpunkten 
veranlasst wird, konnen durch die berechnete Geschwimdig-keitsdiagramme angezeigt werden. Daraus ist 
zu ersehen, dass die radiale Riickstriimungszone unter der Bedingung der kleinen Kiihlgeschwindigkeit 
mit der Schmelzzone fiber der 625”C-Isotherme korrespondiert. Mit der Steigerung der Kiihlge- 

schwindigkeit wird die von der siphonik bewirkte Striimung immer wichtiger. 

HHCJIEHHOE MOfiEnHPOBAHHE KOHBEKHWH B ABYX@A3HOR 3OHE PHHAPHOI-0 
CHJIABA 

Ammramm---H0nysem.r ocnonubre ypanuemin nne uricnemroro htonenHposariHn xoHaeami n neyxrJa3- 
~oii30~e~a0~~o~epa~~o~~~~n0p~~okcpeLlbIxan~olluroi.~ape~eHan~~eZL~oii3anare, 

CBff3aHHOficHZl.lI,WHeM Hex3eecllrbmnepeMeHHbxX BypaBHe~ax,~~onb3y~csM~on up06 B om11601c. 
Pashfep H npoTsxceHHomb htexrnewpmoro noToga B pa3mimbre MobtembI speh4em 0npe~enmoTcn 

IlO paCCYHTaHHbIb4 EpO&iJInM CKOpOCTeti. ~OK;uaIiO, ST0 paLWlJlbHaSl o6nacrb 06paTHOro TePeHHS, 

o6ycnoaneHHan ecTec’rseHHo~ rormerruieii, CooTBeTcTByeT nopric~o~ 30He bard ~30~epMofi 625°C B 
)'CJlOBEiliX HH3KOii CKOpOCT5.l OXJTWeHHZ?. c pOCTOM CKOPOCTH OXJIaKUIeHHn BbI3BaHHOe CHI$OHHOfi 

canoii reuemie nprio6peraer uce 6onbmee 3Ha~eriAe. 


